A topological lower bound for the energy of a unit vector field on closed Euclidean hypersurfaces

Adriana V. Nicoli1, Fabiano Gustavo Braga Brito2, \Icaro Gonçalves3

1 University of São Paulo
2 Federal University of ABC
3 University of São Paulo

For a unit vector field on a closed immersed Euclidean hypersurface M^{2n+1}, $n \geq 1$, we exhibit a nontrivial lower bound for its energy which depends on the degree of the Gauss map of the immersion. Two non-homotopic immersions will possess two different normal degrees; the bigger this value, the bigger the energy of a given unit vector field. When the hypersurface is the unit sphere S^{2n+1}, this lower bound corresponds to a well established value from the literature. We introduce a list of functionals B_k on a compact Riemannian manifold M^m, $1 \leq k \leq m$, and show that, when the underlying manifold is a closed hypersurface, these functionals possess similar properties regarding the degree of the immersion. In addition, Hopf flows minimize B_n on S^{2n+1}.

References

